Realizing 4-manifolds as achiral Lefschetz fibrations
نویسندگان
چکیده
منابع مشابه
Realizing 4-manifolds as Achiral Lefschetz Fibrations
We show that any 4-manifold, after surgery on a curve, admits an achiral Lefschetz fibration. In particular, if X is a simply connected 4-manifold we show that X#S × S and X#S×̃S both admit achiral Lefschetz fibrations. We also show these surgered manifolds admit near-symplectic structures and prove more generally that achiral Lefschetz fibrations with sections have near-symplectic structures. A...
متن کاملLefschetz Fibrations of 4-Dimensional Manifolds
An n-dimensional manifold is an object which locally resembles n-dimensional Euclidean space. Different categories of manifolds can be considered simply by requiring different sorts of maps to perform these local identifications: A manifold may be smooth (if the maps are required to be infinitely differentiable), or complex (if n is even and the maps are required to be holomorphic), or topologi...
متن کاملNoncomplex Smooth 4-manifolds with Lefschetz Fibrations
Recently, B. Ozbagci and A. Stipsicz [12] proved that there are infinitely many pairwise nonhomeomorphic 4-manifolds admitting genus-2 Lefschetz fibration over S but not carrying any complex structure with either orientation. (For the definition of Lefschetz fibration, see [6].) Their result depends on a relation in the mapping class group of a closed orientable surface of genus 2. This relatio...
متن کاملSymplectic Lefschetz fibrations and the geography of symplectic 4-manifolds
This paper is a survey of results which have brought techniques from the theory of complex surfaces to bear on symplectic 4-manifolds. Lefschetz fibrations are defined and some basic examples from complex surfaces discussed. Two results on the relationship between admitting a symplectic structure and admitting a Lefschetz fibration are explained. We also review the question of geography: which ...
متن کاملVortices and a TQFT for Lefschetz fibrations on 4–manifolds
Adapting a construction of D Salamon involving the U(1) vortex equations, we explore the properties of a Floer theory for 3–manifolds that fiber over S1 which exhibits several parallels with monopole Floer homology, and in all likelihood coincides with it. The theory fits into a restricted analogue of a TQFT in which the cobordisms are required to be equipped with Lefschetz fibrations, and has ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2006
ISSN: 1073-7928,1687-0247
DOI: 10.1155/imrn/2006/70272